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In this paper the applicability of a statistical-mechanical theory to freely decaying two-dimeng&dpal
turbulence on a bounded domain is investigated. We consider an ensemble of direct numerical simulations in
a square box with stress-free boundaries, with a Reynolds number that is of the same order as in experiments
on 2D decaying Navier-Stokes turbulence. The results of these simulations are compared with the correspond-
ing statistical equilibria, calculated from different stages of the evolution. It is shown that the statistical
equilibria calculated from early times of the Navier-Stokes evolution do not correspond to the dynamical
quasistationary states. At best, the global topological structure is correctly predicted from a relatively late time
in the Navier-Stokes evolution, when the quasistationary state has almost been reached. This failure of the
(basically inviscid statistical-mechanical theory is related to viscous dissipation and net leakage of vorticity in
the Navier-Stokes dynamics at moderate values of the Reynolds nur8t€63-651X99)00508-5

PACS numbdss): 47.32.Cc, 47.27.Eq, 05.20y

[. INTRODUCTION that for an initially small-scale vorticity field, small but finite
dissipation leads to limited predictability: the global form of
The formation of large-scale vortices ifguasijtwo-  the final, quasistationary vortex can be predicted from the
dimensional2D) turbulence has been studied extensively ininitial conditions, but the details are only captured if the
|aborat0ry experiments]__zl] and in numerical simulations equilibrium is derived from the flow field after a few eddy
[5-7]. For sufficiently high Reynolds numbers, the flow turnover timeq14]. Furthermore, laboratory experiments in
eventually organizes in one large-scale structure, which i§ magnetized plasma colun{d] and equivalent Navier-
stable and stationary, apart from weak dissipative effects>t0kes simulations have shown that for isolated, large-scale
Several authors have applied the principles of statistical mdnitial vorticity fields, the statistical theory applies only when
chanics to predict the form of these large-scale quasistatiorit 'S restricted to a subdomain, because the time evolution is
ary structures. This approach was initiated by Ons&gkr not globally ergodic in these cas¢$5]. Notwithstanding

who qualitatively predicted the appearance of coherent strut.l-hese limitations, the general conclusion from these compari-

tures by considering a system of point vortices. Joyce angons 1S that the statlst|cal_ predictions match_ th_e ob_se_r\_/ed
Structures reasonably well in the case of a periodic or infinite

Montgomery[9] presented a general equation, known as th% .
. . : ) g omain.
sinh-Poisson equation, for the statistical equilibrium of a

. . However, laboratory experiments with realistic fluid flows
point vortex system. Both Millef10] and Robert and Som- are performed in finite containers with physical boundaries

meria[11] independently derived an alternative equation for[2’3]_ Since the quasistationary states emerging in such ex-
the statistical equilibrium of an inviscid 2D fluid on the basis periments usually fill the whole domain, the shape of these
of a patchwise discretization of the continuous field. The aimtyctures depends on the geometry of the container. Solu-
of the present paper is a discussion of the applicability of thigions of the various statistical-mechanical theories, based on
statistical theory of vortex patches to freely decaying 2Deither point vortices or vortex patches, have been investi-
turbulence on a bounded domain, with Reynolds numbergated systematically for the case of a bounded domain. Both
comparable to those in laboratory experiments. Pointin and Lundgrer16] and Ting, Chen, and Lefl7]

In several publications, statistical-mechanical predictiongalculated maximum entropy solutions of the sinh-Poisson
based on a patchwise discretization have been comparegjuation on various bounded domains. Statistical equilibria
with the results of direct numerical simulations. A remark-for bounded fluids based on a patchwise discretization were
ably good agreement was found in a numerical simulation otalculated by Jitner, Thess, and Sommel(ia8] for a class
the time evolution of a periodically continuated shear layerof initial conditions consisting of isolated vortex patches, and
[12], and in the study of an isolated vortex merdés]. by Chavanis and Sommerjad9] for initial conditions satis-
However, a high Reynolds-number simulation of Navier-fying the so-called strong-mixing conditions. Several authors
Stokes dynamics on a doubly periodic domain has showi3,18-2(Q have tried to relate these statistical solutions based

on a patchwise discretization to experimental observations or
numerical simulations, with varying success. For example,

* Author to whom correspondence should be addressed. Electronidlarteau, Cardoso, and Tabelifg] concluded that the cal-
address: S.R.Maassen@fdl.phys.tue.nl culated equilibria do not match experimentally observed qua-
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sistationary structures in thin layers of electrolytdth Re  initial condition. Formulated in terms of the velocity
~1000, whereas a numerical simulation of the same experi= (u,v) and the vorticityw=2-V X v, the equations of mo-
ment (approximated by a purely 2D system with stress-freetion are

boundaries and Re3000 lead to the opposite conclusion

icabili istical- dw 1
[20]. A!together, the applicability of _the statls.tlcall & Vo= —V20, )
mechanical theory of vortex patches to finite domain fluid at Re
flows is still controversial.
The main problem in comparing statistical-mechanical Vv=2XVw. 2

equilibria with Navier-Stokes simulations in closed geom-

etries is the appropriate choice of boundary conditions. In thd he Reynolds number is defined as-RéW/v, whereU is
various (basically inviscid statistical-mechanical theories, the root of the mean-squared velocity of the initial flow field
the boundaries are completely determined by the impermg?er unit surfaceW is the half-width of the domain andis
ability condition (no in or outflow, whereas the second- the kinematic viscosity of the fluid. All runs described in this
order derivatives in the viscous term of the Navier-StokegPaper are performed with Re2000. The unit of time is the
equation require a second boundary condition. Numericalime-independent eddy turnover tirfé/U.

simulations of decaying 2D turbulence in circu[@1] and The flow is confined to the square bpx 1,1]X[—1,1]
squard 22,23 containers have shown that, for moderate val-With boundaryb by enforcing the impermeability condition
ues of the Reynolds number (R2000) the choice of this .

second boundary conditiof@ither no-slip or stress-freén- A-v]p=0. &)

fluences the topology of the guasistationary state. In th?\Iote that, in the vorticity-stream function representation of

physically most relevant case of no-slip boundaries, strongnoolel (1) and (2), condition (3) is equivalent to imposing

vorticity sheets emerge in the viscous boundary layers, ~_ L :
which detach from the boundaries and interact with the floww|b const, where the stream functiohis defined by the

. S . ; ; Poisson equationn=—V?y. In addition, we impose the
in the interior of_ the domain. This process of creation andy 1o be 2tress-free at trllﬂe boundary: P
detachment of viscous boundary layers cannot be taken into
account in statistical-mechanical equilibria. Therefore, it is A-Vv,|,=0, (4)
unlikely that statistical theories correctly predict the quasi-

stationary states observed in laboratory experiments and nwhere v, is the component of the velocity parallel to the
merical simulations with no-slip boundaries at moderate valboundary. On a square domain, a combination of conditions
ues of Rg22]. The best one can hope is that for sufficiently (3) and (4) yields

high Reynolds numbers, the statistical prediction corre-

sponds to the interior flow structure, i.e., excluding the w|p=0, )
boundaries. However, such high Reynolds number computa- ) N o
tions are not possible with present state-of-the-art numerica¥hich will be used as a boundary condition for the vorticity
techniques for flows with no-slip boundaries. Since sheafduation(l). _ _

dominated boundary layers do not occur in simulations with  Equations (1)—(5) are solved numerically with a 2D
stress-free boundary conditiof@2], such simulations seem Chebyshev pseudospectral method. Using Cartesian coordi-
to be better suited for comparison between statistical predid?atesr=(x,y), the vorticity and both components of the
tions and Navier-Stokes dynamics with moderate Reynold¥elocity are expanded in a double truncated series of
numbers. Chebyshev  polynomials; for  example, w(X,y,t)

In this paper we reconsider the applicability of the =Zh-oZm-o@nm() Ta(X) Tm(y), With T,(x)=cosf6) and
statistical-mechanical theory of vortex patches in the case of =cos '(X). The numerical integration is performed in spec-
a bounded domain. In particular, we present the results of affal space, except for the evaluation of the nonlinear terms,
ensemble of Navier-Stokes runs in a square box with stressvhich are calculated in physical space using fast Fourier
free boundariegSec. 1) and the corresponding statistical transformations. The time integration is based on the second-
equilibria, calculated from different stages of the evolutionorder accurate semi-implicit Adams-Bashforth-Crank-
(Sec. lll). The initial vorticity fields are small-scale, quasitur- Nicolson scheme. Further details of the numerical procedure
bulent, random distributions of vorticity. Although viscous can be found irf22—-24.
effects cannot be neglected for such small-scale initial con- An ensemble of 16 independent, quasiturbulent, initial
ditions [14], we have made this choice in order to avoid conditions is constructed in the following way. For each
problems related to ergodicity and to make sure that the quanember of the ensemble the first>665 Chebyshev coeffi-
sistationary states are the results of unbiased turbulent relagients of both components of the velocity are drawn ran-
ation. domly from a zero-mean Gaussian distribution. The variance

on,m Of the initial velocity spectrum is chosen as

Il. NAVIER-STOKES DYNAMICS
2 nm

A. Numerical method Tnm [+ (5 4L+ (Em)*]
In this section the results of a numerical experiment,
based on simulations of the 2D incompressible Navierando,,=0 for n, m=65. Subsequently, the resulting veloc-
Stokes equation, are presented. The experiment consists ity field is multiplied by smoothing functiong(x) andf(y)
an ensemble of runs, each with a different quasiturbulenin order to enforcev(r,t=0)=0 at the boundariesf(x)

for 0=<n, m=64, (6)
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=[1—exp{— B(1—x?)?}] with B=100). The resulting velocity
field v(r,0) is normalized such that the? norm of the ve-
locity field per unit surface is equal to one. It should be noted
that the initialization procedure described above leads to ve:
locity fields with V-v+0, which are physically irrelevant.
Although a divergence-free flow field with stress-free bound- i s
ary conditions is enforced during the first time integration LT
step, a short transient phase occurs in which a realistic physi (@11 ) 1=6 © =12
cal situation is reached. Therefore, the fieldatl will be
considered as the physical initial condition of the flow evo-
lution.

The time integration is sensitive to the number of Cheby-
shev modes used in the expansion. It is found that for this
particular type of initial conditions and this particular value
of the Reynolds number (Re2000), N=288 Chebyshev
modes in each direction is sufficient to resolve the smallest
scales of the flow field: increasing this number does not (d)1=18 ©1=25 () =100
change the results of the integration during the first 300 eddy ) . ) o
turnover times. Since numerical simulations of flows with  FIG. 1. Navier-Stokes time evolution of the vorticity field, for a
nonperiodic boundary conditions are computationally muctyPical run in which a relatively symmetric dipole is formed.
more expensive then the doubly periodic case, the hardwat%aShed co_ntours r_epresent positive v_ort|C|ty, solid contours repre-
necessary to perform well-resolved simulations with highe St negative vorticity. The contour intervals g 2, (b) 0.5,
Reynolds numbers was not available. (¢) 0.25,(d) 0.2,(¢) 0.1, anda(f) 0.05.

During the numerical computations, several integrals ar
calculated, such as the total enefigythe net circulatior’,
and thenth moment of the vorticityl", (with, in particular,
the enstrophy’,). These quantities are defined, respectively,
as

edsymmetric dipole is formed, which transforms into a mono-
pole at later timegcf. Figs. 2d) and 2e)]. For t=45, the
flow dynamics is essentially determined by viscous dissipa-
tion, a regime that is not part of the present study. Still, it is
interesting to see that the dipolar structure does not stay in
1 the same position, but performs a slow rotating motion. For
E(t)= EJ v(r,t)2dr, (7) instance, between Figs(€l and Xf), the dipole has rotated a
bit more than 90° clockwise.
In our numerical experiment, a majority of ru(k2 out of

_ 16) evolved towards a dipolar structure, such as shown in
F(t)_f o(r,ndr, ® Fig. 1, whereas the monopolar structure, such as the one
formed in Fig. 2, was obtained in only four cases. This divi-
N sion in terms of topology is, however, quite rough. The di-
Fn(t):f w'(r,Hdr. ©) polar structures, in fact, range from very symmetric dipoles

Due to the random initialization, the values of the circulation
att=1 are small in each realization and zero on average.

B. Results of the numerical simulations

I

The most remarkable observation in the numerical experi-i#
ment is that the different integrations do not evolve towards g
the same equilibrium state, although their initial conditions
are statistically equivalent. Roughly speaking, the different =t
guasistationary states that are found belong to two topology,
classes: dipoles and monopoles. The emergence of theg
structures is illustrated in Figs. 1 and 2, respectively, which
contain snapshots of the evolving vorticity fields of two typi-
cal runs. Fot=<15[cf. Figs. 1a)—1(c) and Figs. 2a)—2(c)],
the global dynamics of all simulations is characterized by the
formation of coherent structurgsnonopoles, dipoles, and,
occasionally, tripolesand the appearance of thin vorticity-
gradient sheets in regions of high strain between the vortices
and between the vortices and the walls. Fos1545, the FIG. 2. Navier-Stokes time evolution of the vorticity field, for a
flow organizes into a large structure. At this point the differ-typical run in which a monopole is formed. Dashed contours repre-
ences between the runs become evident: in Fig. 1 an almosént positive vorticity, solid contours represent negative vorticity.
symmetric dipole emergd§igs. 1d) and Xe)] that remains  The contour intervals aré) 2, (b) 0.5, (c) 0.25,(d) 0.2, (e) 0.15,
present until at leagt=100, while in Fig. 2, initially a very  and(f) 0.05.

(b) =6 (c)t=13

(d) =18 (e)1=38 (£) t=98



PRE 60 STATISTICAL-MECHANICAL PREDICTIONS AND. .. 2867

10° . , 2.0 T T T T T T T
1.5

1.0

F 05

FIG. 3. Time evolution of the rati®', /E for four different runs. FIG. 4. The net circulatiod’ plotted vs timet for six different
Curves 1 and 2 correspond to the runs shown in Figs. 1 and Zuns. Curves 1 and 2 correspond to the runs shown in Figs. 1 and 2,
respectively. respectively.

to cases where one of the vortices is substantially stronge&ies. Figure 4 shows the time evolution of the net circulation
than the other one. Once the dipole has been formed, tH@r six different runs, including the dipole formation of Fig.
weaker vortex is often more strongly dissipated near thé (curve 1 and the monopole formation of Fig.(2urve 2.
walls and the dipole becomes more and more asymmetric. Iff @Ppears that for the almost symmetric dipole formations
fact, the monopole formation shown in Fig. 2 can be re-(curves 1, 3, and 6 in Fig.)4positive and negative vorticity

garded as an extreme realization of the asymmetric case: tﬂ ak through the boundary' In-more or Ies; gqual amounts,
small positive vortex in the upper left corner of Figdpcan whereas a symmetry breaking between positive and negative

be regarded as the weaker part of an asymmetric dipole. Thvorticity Oceurs in the cases where an asymmetri_c _dipole
curve 5 or a monopolécurves 2 and Yis formed. Defining

small vortex keeps rotating around its negative counterpar he total posive and negative circulationd ™
until at t=35 it is torn apart and distributed in a ring of . : a i .
b g =[ow™(r,t)dr, with o*>0 and o~ <0, respectively, this

positive vorticity[Fig. 2(e)]. L . L
The different time scales for dipole and monopole forma_symm_etry breaking is clearly illustrated in F'_g' 5_’ Wh@_é
tions are clearly illustrated in Fig. 3, where the ratio of en-andF are d_rawn for the two runs shown in Fig.(dolid
strophy and energl/, /E is drawn. Sincd ,/E~k?, with k purves) andl Fig. 2(dashed curvesThe curves correspond-
the dominant wave number of the energy spectrum, this rati g to the dipole formation stay relatively close to each other,
' ut the curves corresponding the monopole formation start to

reflects the scale that dominates the vorticity field. Curves 1. .
and 2 correspond to the dipole and monopole formationdiverge atabout=10, leading to a strong decrease of the net

shown in Figs. 1 and 2, respectively. The curve of the dipolé:'rCUI"’ltionr (curve 2in Fig. 4. T.hus we can relate the value
approaches its minimum valugargest scalealready att of I" to the asymmetry of the dipolar state that emerges: for

~25, whereas the curve of the monopole formation appositiveI‘, the positive vortex is stronger than the negative

proaches itgmuch lowej minimum att~40. Curve 3 re- one, and vice versa.
flects the very late emergence of another symmetric dipole . ~ .
(att=~40), and curve 4 corresponds to a run in which a very
asymmetric dipolar structure is formed aroune25. In this
latter case one of the vortices is weakened by dissipation
near the boundary until a monopolar structure remains at 10° ¢
=55, We expect that in the very late time viscous stage of
the evolution {=300) monopoles will be formed in all runs,
since this structure is the viscous eigenmode solution with
the lowest damping ratg2,22,23,25.

Another characteristic difference between the decay sce- ~~.
narios presented in Figs. 1 and 2 is the time evolution of the _ N
total circulationI’, defined in Eq.(8). In contrast to flows s
with no-slip or periodic boundaried, is not a conserved A
guantity in a box with stress-free boundary conditions. Spa- 3

tial integration of the Navier-Stokes equati@l) yields o 10 20 %0

dr !

1
dt  Re % dsh-Vo(r,t), (10 FIG. 5. Decay of the total positivel(*) and negative I{ 7)
circulation for the dipole formation shown in Fig(4olid lineg and
which implies that vorticity can diffuse through the bound- the monopole formation shown in Fig.(@ashed lines
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FIG. 6. Normalized energi/E, and enstrophy’, /(I",) plot-
ted vs timet for the dipole formation shown in Fig. (solid lineg
and the monopole formation shown in Fig(@ashed lines

Since the numerical simulations are performed with a
moderate value of the Reynolds number, viscous dissipatior
in the Navier-Stokes dynamics induces a significant decay of
the normalized energig/Ey and enstrophy's/(I'5)q as il-
lustrated in Fig. 6. Apart from decreasing the kinetic energy,
viscous dissipation leads to rapid changes in the vorticity
distribution in the early stages of the flow evolution. Figure
7(a) displays the fraction of the domain arég with a cer-
tain vorticity level(o) for the run shown in Fig. 1 a&t=1, 5,
and 10. In this initial stage of the flow evolution, small-scale
structures are efficiently dissipated, while high-value vortic-
ity concentrates in isolated vortex structures. This leads to ¢

K

vorticity distribution that is more sharply peaked around 0.8 : : : : : ! : ——
zero, as can be inferred from Fig(al. The shape of the 0 10 20 30 40 50 € 70 8 90 100
vorticity distribution is conveniently represented by the kur- - t

tosisK=T",/(I",)2. Figure 7b) displays the time evolution

of kurtosisK, divided by its initial valueK,, for the two

simulations considered in Fig. {solid line and Fig. 2 FIG. 7. (a) Vorticity distributions corresponding to the run

(dashed ling The initial growth ofK is due to the evolution shown in Fig. 1, plotted at three different times gbyithe kurtosis

towards a more sharply peaked vorticity distribution, asK plotted vs timet for the dipole formation shown in Fig. (solid

shown in Fig. Ta). In the final stages of the evolution, the lines) and the monopole formation shown in Fig(@ashed lines

flow dynamics is dominated by viscous dissipation of theThe point whereK reaches its maximum value can be identified

large-scale vortex, which leads to a decreasé.dfherefore,  with the emergence of the quasistationary stafeFig. 3.

at the point wher& reaches its maximum value, the nonlin-

ear evolution of the flow is basically depleted. In most casegquilibria calculated from the initial conditiorgt t=1) of

we have found that shortly after this time, the ralig/E  the ensemble of Navier-Stokes simulations are presented and

becomes constant, indicating that the formation of the quacompared with the analytical solutions obtained by Chavanis

sistationary state is complet¢df. curves 1 and 2 in Figs. 3 and Sommeria in a linearized limit of the thedr9]. Fi-

and 1b)]. nally, in Sec. Il C it is shown how the statistical predictions
change when the input vorticity fields are chosen from later
times in the Navier-Stokes evolution.

b

lll. STATISTICAL-MECHANICAL PREDICTIONS

In this section the results of the Navier-Stokes simulations
described in Sec. Il are compared with predictions based on
a statistical-mechanical theory for 2D turbulence, derived by The statistical-mechanical theory considered in this paper
Miller [10] and Robert and Sommerjd1]. Firstly, in Sec. was derived on the basis of the inviscid Euler equation
Il A we briefly describe the basic principles of this theory, [10,11. Inviscid (or high Reynolds numbgiflow dynamics
based on a patchwise discretization of the continuous flovis characterized by the development of very complex, thin
field, and present the equations defining the correspondingorticity filaments. A deterministic description of a perfectly
statistical equilibria. In Sec. Il B the statistical-mechanicalinviscid flow, where these filaments are not dissipated,

A. Entropy maxima of the vortex patch model
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would, therefore, require a rapidly increasing amount of in- Setting the constrained entropy variation to zero, one
formation as time goes on. The idea of a statistical theory i§inds a well-defined relationship between the equilibrium,
to give up the deterministic description and introduce amacroscopic, vorticity, and stream functiph0,11], which
probabilistic one. Therefore, the exact knowledge of the finewe denote by a superscript

grained, or microscopic, vorticity field(r) is replaced by .

the probability density(r,o) of finding the vorticity valuer . Joe P (N-ro)gy

at positionr [11]. Once the probability function is intro- w*(r)= fe Br*(D-uogy (14)
duced, one can consider the locally averaged, or macro-

scopic, vorticity fieldw(r) = fop(r,o)do. Generally, there  The values of the Lagrange multipliesand u(o) are de-
are different microscopic vorticity fields that correspond totermined by the input values of the enery and distribu-
one macroscopic structure. The statistical equilibrium is detion g,(o) via constraints(12) and (13). The solutions to
fined as the macroscopic vorticity field that corresponds tqegs. (12)—(14) are stable statistical equilibria, provided that
the largest number of microscopic fields. they are true maxima, and not minima or saddle points, of

Counting the number of microscopic realizations corre-the entropy, which remains to be checked. Together with the
sponding to the same macroscopic structure leads to the defopisson equation,

nition of the mixing entropy:

w* (r)=—=V2y*(r), (15)

S= _J p(r,o)Inp(r,o)dodr. (1) Egs.(12—(14) completely define the spatial structure of the
statistical equilibrium. The geometry of the domain deter-
ines the boundary condition for the Poisson equation. In
e present case of a closed box we piit(r)|,=0. Note
that, contrary to the Navier-Stokes equation, H4®)—(15)
do not require a boundary condition for the vorticity. There-
fore, the statistical-mechanical equilibrium depends only on
the geometry of the domain and the values of the input con-
straintsEy and go(o); the theory does not account for no-
slip nor stress-free boundary conditions.
Since, for general input parametagg(o) and Ey, Egs.
_ (12)—(15) cannot be solved analytically, the entropy maxima
Ej wydr=Eo, (12) have to be determined numerically. For this purpose, we use
an algorithm developed by Turkington and Whitakaw].
The numerical treatment requires not only a spatial discreti-
zation of the fields, but also an approximation of the continu-
ous vorticity distribution at a finite number of vorticity levels
o . This brings the infinite setl3) down to a finite number
of constraints. In order to calculate the values of the distri-
bution go(oy), the corresponding vorticity fieldi(r) is dis-
cretized on a grid of 6865 equidistant points. Subse-
v f p(r,o)dr=go(a), 13 quently, the continuous vorticity distribution is approximated
by 30 equidistant levels, ranging between the minimum
and maximum values of(r). We have checked that the
equilibria are not sensitive to these approximations: increas-

If ergodicity is assumed, the most probable state is define
by the maximum of the entropfil) for fixed values of the
inviscid invariants, such as the enerfyand the different
moments of the vorticityl',. The energy(7) can be ex-
pressed in terms of the macroscopic vorticity field and
stream functiondefined byw= —V?2y), and is taken to be
conserved on the macroscopic level:

where the subscript 0 refers to tifxed) input value. The
moments of the vorticity(9) are incorporated on a micro-
scopic level by conserving the input vorticity distribution
Jo(0)=(1IN) [ 6(o— wo(r))dr via

in which V is the domain area. This condition implies that

thfstggar:szrrizgfi;h#]de ilqeié?ggéz V;’gg:ggﬁ”ﬁ:)r:]Vﬁlré',gt}[/h\é?léeing the number of gridpoints or the number of vorticity lev-
g P ption. Yels does not change the results. The numerical valug,of

(13) does not 'f“p'y the conservation of the momeﬁt§on . can be calculated directly from the velocity fiel¢r) using
the macroscopic level, as they are partly transferred into fine:

grained vorticity fluctuations, which vanish in the local av-eEq' .
eraging. For example, the enstroplty, of the (coarse-
grained statistical equilibrium is generally lower than its
input value, while the circulatiof’ is exactly conserved on The statistical equilibria calculated on the basis of the
both fine- and coarse-grained levels. This distinction bewvalues ofE, andgy(o) att=1 in the Navier-Stokes simu-
tween macroscopic and microscopic invariants coincidegations, are characterized by an approximately linear relation
with the distinction between “robust” and “fragile” invari- between vorticity and stream function for all runs. For ex-
ants in nearly inviscid flow$26]: when the viscositw—0,  ample, Fig. 8a) depicts thew-¢ relation of the equilibrium
the energy and the circulation become constants of the maalculated from the field shown in Fig.(d. Figure &b)
tion, whereas the conservation of higher-order inviscid in-shows the corresponding vorticity field: a negative vortex
variants is destroyed by any infinitesimally small amount ofsurrounded by a ring of positive vorticity. The monopolar
viscosity. Therefore, one can argue that the statistical theorgtructure of the statistical equilibrium turns out to be generic
of vortex patches extends to weakly viscous flows, at least iffior this class of initial conditions. The sign of the core de-
a qualitative sense, although it is derived on the basis of thpends sensitively upon the specific realization: we have
inviscid equations of motion. found about as many positive as negative monopoles. Obvi-

B. Predictions from t=1



2870 H. BRANDS, S. R. MAASSEN, AND H. J. H. CLERCX PRE 60

2|

4}

A 6

FIG. 9. The raticS/E vs a control parametet (A%=1"?/2E) for
different statistical equilibria in a square box, obtained in the lin-
earized approximation of the-# relation, calculated by Chavanis
and Sommeri@19]. The two solid curves represent stable monopo-
lar solutions of different sigiisolid contours represent positive vor-
ticity, dashed contours represent negative vortjcibove a cer-
tain threshold, the negative monopole becomes unstable. The
dashed curve represents dipolar solutions, which can be shown to
be unstable for all values ok. We gratefully acknowledge P-H.
Chavanis for providing this picture.

A=—. (16)

Figure 9 displays a diagram of the ratio between entropy and
b energyS/E versusA, for three different solutions to the lin-
. o o earized equations in a square b@xle kindly thank Dr. P-H.
FIG. 8. w-i relation (a) and vorticity field(b) of the statistical Chavanis for providing this pictuyeln this diagram, solid

equilibrium calculated from the vorticity field shown in Figlll ¢ yes represent stable solutions, and the dashed curve cor-
Dashed contours represent positive vorticity, solid contours reprel’esponds to unstable solutions Tf;e solutions with negative
sent negative vorticity. The contour interval is 0.5. The shape of th '

vorticity field and the linearw-¢ relation of this equilibrium are T;g"l;;t?\zé/xncgt:juir:ﬁ::gn this flglure,;an .be ob]Ealr?ed frqrrj
generic for all predictions at=1. the p . y reversing the signs of the vortic
ity and stream function.
ously, these statistical equilibria do not agree with the dipo- For all the initial conditions of our ensemble, we found
lar quasistationary states of the Navier-Stokes simulationg\|<0.2. From the diagram depicted in Fig. 9 one can read
presented in Sec. Il. that in this range both positive and negative monopoles are
The generality of the monopolar structure in thel pre-  Stable statistical equilibria in the linearized lingolid lines.
dictions can be understood by considering the so-calle®nly above a certain threshol@i|~0.5), the solution with
“limit of strong mixing”, in which the entropy maximiza- the lowest entropya negative monopole whef,['>0 and
tion is only weakly restricted by constraintk?) and(13). In  a positive monopole when,I"<0) becomes unstable. This
this limit, the statistical equilibria are characterized by a lin-analysis of the linearized case is consistent with the numeri-
ear relation betweem and ¢ [19]. Since the statistical equi- cal solutions of the full statistical-mechanical equations pre-
libria calculated fromt=1 in our ensemble of simulations sented above, where indeed both positive and negative
are characterized by such a lineasny relation, one can ex- monopoles are found for statistically equivalent vorticity
pect that the initial conditions used for these calculations ligiields. The dashed line in Fig. 9 corresponds to dipolar solu-
in the strong-mixing regime. This property could have beertions of the linearized equations. In REE9] it is shown that
inferred a priori from the abundance of small-scale struc-these fields are at best saddle points instead of entropy
tures in the initial conditions. maxima, and, therefore, these solutions are unstable. This
In Ref.[19] Chavanis and Sommeria presented a classifiobservation is consistent with the fact that no dipolar struc-
cation of such linearized solutions on a bounded domaintures are predicted from=1 in our statistical analysis. Fi-
The authors show that the structure of the solutions in theally, we remark that monopolar statistical equilibria are also
linearized limit depends only upon a single parameter predicted by the statistical-mechanical theory based on a
defined by pointwise discretization. Solving the sinh-Poisson equation
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on a bounded square domain, Pointin and Lunddrksi
found that solutions with the highest values of the entropy
have a monopolar topology.

C. Predictions from later times

We anticipate that the failure of the statistical predictions
from the vorticity fields at=1 is related to viscous effects
in the Navier-Stokes simulations. As was shown in Fig. 6,
the energy, which is conserved in the statistical theory, de-
cays substantially in the numerical integrations. Neverthe-
less, by repeating the maximum entropy calculationg at
=1 for the same discretized initial distributions, but with
smaller values oE,, we have found that this parameter does
not change the global shape of the solutions. Apart from
decreasing the kinetic energy, viscous dissipation leads to
rapid changes in the vorticity distributiag(o) in the early
stages of the flow evolutiofsee Fig. 7. In Ref.[14] it was
shown that this effect is responsible for the limited applica-
bility of the statistical theory in the case of small-scale initial
conditions and periodic boundary conditions.

If changes in the vorticity distribution are responsible for
the failure of the statistical theory &1, we expect to ob-
tain increasingly better results when the statistical equilibria |G, 10. Vorticity contour plots corresponding to the statistical
are computed with the constraint valugg andgg(o) taken  equilibria calculated with the constraint valuEsand g(co) taken
from later times. To verify this, we have calculated the stafrom the fields shown in Figs.(4)—1(d). Dashed contours represent
tistical equilibria on the basis of the vorticity fieldg(r,t) at  positive vorticity, solid contours represent negative vorticity. The
different timest with 1=<t=<40, for all 16 runs. The results of contour interval is 0.5 for all displayed fields.
this analysis are illustrated by the exemplary dipole and

monopole formations of Figs. 1 and 2. Figures 10 and 13 3 linear w-y approximation. The fact that, at later times,
display four statistical equilibria corresponding to these regipolar solutions are generated, implies that after a certain
spective simulations. As a first observation, notice that, intime the linear approximation is no longer valid. Indeed we
deed, the time evolution of the input parameters results in theng that thew-y relation of the statistical equilibrium be-
prediction of different statistical equilibria from different ¢gmes increasingly nonlinear, as illustrated in Fig. 11. The
times for the same run. . o _ evolution from linear to nonlineaw-i relations turns out to
Let us first consider the dipole formation in more detail. pe generic for all monopole and dipole formations.

Fort<12, the statistical theory falsely predicts a monopolar  Figure 12 contains the statistical equilibria corresponding
quasistationary state. For example, Figsal@nd 1@b) dis- o the formation of the monopole depicted in Fig. 2. These

play the monopoles computed from the field¢atl andt  maximum entropy solutions have the following structures: a
=6, respectively, which are of opposite sign. Rer12, a

dipolar structure is predicted, as illustrated by the predictions : : ,
att=12 andt=18 in Figs. 10c) and 1@d). Although the
global shape of these latter predictions coincides with the
global shape of the quasistationary state of the Navier-Stokes
simulations, a detailed comparison between the vorticity 2+
plots shown in Figs. 1@) and 1@d) and the quasistationary
state of the Navier-Stokes simulatifig. 1(e)] still reveals
differences. This can be seen clearly in Fig. 11, which con-
tains thew- relations of the four solutions shown in Fig. 10
(solid lines, together with thaw-i scatter plot of the quasi- 2
stationary state of the corresponding Navier-Stokes integra-
tion att=25. Notice that the scatter has not yet collapsed to
a functional relation, indicating that the structure is, in fact,
not completely stationary. The shift of the-¢ curves ob-
served in Fig. 11 reflects the structure of the solutions: the -6 ‘ ‘
dipolar states are centered aroupiek0 (t=12 andt=18), 06 04 02 0.0 02 04
whereas the curves for the negative=(L) and positive { W

=6) monopoles are situated at negative and positive values

of ¢ (with #|,=0), respectively. As we have discussed FIG. 11. w-y relations corresponding to the statistical equilibria
above, the early time prediction of a monopolar structate  shown in Fig. 10(solid lines, together with thew-i scatter plot of
t<<12) is consistent with the analysis of statistical equilibriathe field att=25 in the Navier-Stokes evolutidiFig. 1(e)].

(©) =12 (d) =18
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TABLE I. Several characteristics of the reported ensemble of
runs: the time at which a quasistationary st@&S emerges in the
Navier-Stokes simulationtgsg, the type of QSSM=monopole,
D=dipole), the net circulatiorl” at timetgss, the time at which the
correct global structure is predicted by the statistical thebgy)(
and the value of the parametarat the timetg,.

Run toss Type of QSS  T'(tgsd tsm A (tsw)

1 24 D 0.14 12 0.38

2 38 M —1.84 14 —0.69
3 41 D 0.04 40 0.06
4 23 D 0.63 25 0.92
54 M 1.38 30 1.07

5 50 D 0.73 - (151

6 25 D —-0.26 20 -0.32

7 22 D —0.15 19 —0.25
8 22 D 0.60 20 0.71
9 25 D —0.08 10 —0.002

10 50 D 0.71 - (1.26
11 30 D 0.30 20 0.29

12 20 D —0.10 15 -0.11

=13 @) =18 13 28 D -0.12 20 -0.22

FIG. 12. Vorticity contour plots corresponding to the statistical 87 M ~0.88 ) (-1.9
equilibria calculated with the constraint valuEsand g(o) taken 14 82 D 0.87 - (1.2
from the fields shown in Figs.(2—2(d). Dashed contours represent 15 20 D —0.05 15 011
positive vorticity, solid contours represent negative vorticity. The 2 M —-1.10 N (-1.80
contour interval is 0.5 for all displayed fields. 16 32 D 0.20 15 0.41

negative monopole dt=1, a positive monopole &t=6, a
dipole att=13, and again a negative monopolé¢=atl8. The att=1 [Fig. 12a)]. However, since this structure is pre-
correspondingw-¢ relations are drawn in Fig. 18solid dicted from the initial conditiongat t=1) for all runs, and
lines), together with thew-i scatter plot of the quasistation- since the predictions &t=6 andt=13 in Fig. 12 have a
ary state of the corresponding Navier-Stokes integration atompletely different shape, we feel that this correspondence
t=238. Again, after some timet£14), the global shape of is coincidental. Moreover, as can be inferred from Fig. 13,
the statistical predictiofa negative monopolds in agree- the quasistationary state of the Navier-Stokes simulation is
ment with the quasistationary structure obtained in thecharacterized by a strongly nonlinearys relation, whereas
Navier-Stokes simulatiofisee Fig. 2e)]. One could argue the w-¢ relation predicted front=1 is linear.
that this structure is also predicted from the input parameters Similar analyses of statistical predictions from later times
in the Navier-Stokes evolution of the other 14 runs revealed
8 : , that, for (almos} all runs, after some time the correct global
structure of the quasistationary state is predicted. Table |
. contains some characteristics of all 16 runs of the ensemble:
the time at which the quasistationary state is reached in the
] simulations {os9, the type of quasistationary stat@ono-
pole or dipole, the net circulation of this structure at time
1 toss: and the time at which the global structure is correctly
predicted by the statistical theorysf,). From this table one
. can read that quasistationary dipoles with a more or less
symmetric vorticity distributior(i.e., |I'|<0.3) are, on aver-
1 age, correctly predicted fdr=20, while the quasistationary
state in these runs emerges on average=&7. If the distri-
. bution is more asymmetric|[(|>0.3) the first correct pre-
diction is generally obtained at a later time. For three runs

-2 r

4 + 4
t=18

-6 : ; - s : ] the (asymmetri¢ dipolar quasistationary state is not pre-
07 =05 -3 0401 03 05 dicted from the input fields up to=>50, although by that
7} time the Navier-Stokes evolution clearly has reached a qua-

sistationary state.
FIG. 13. w-¢ relations corresponding to the statistical equilibria ~ The observation that the- relations of the statistical
shown in Fig. 1Xsolid lines, together with thev-i scatter plot of ~ predictions become increasingly nonlinear when the input
the field att=38 in the Navier-Stokes evolutidiFig. 2(e)]. values are taken from later times in the Navier-Stokes evo-
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ditions. In the statistical-mechanical analysis, based on a
patchwise discretization of the continuous flow field, these
structures are not predicted from the initial conditions of the
simulation(att=1). However, if we take the constraint val-
ues that determine the solution to the maximum entropy
equations, from increasingly later times in the Navier-Stokes
evolution, the global structure of the statistical prediction
eventually coincides with the quasistationary state of the cor-
responding simulation.

In order to compare the present findings to the case of a
doubly periodic domain, as described in REt4], the en-
semble of initial conditions presented in Sec. Il has also been
used in numerical simulations of 2D Navier-Stokes flow with
periodic boundary conditions and R2000. (The simula-
tions with periodic boundary conditions are performed with a
Fourier pseudospectral code provided by Dr. A. Nielsen,
RISO, Denmark) Calculating the statistical-mechanical pre-

FIG. 14. Time evolution of the paramet&rfor the same runs as dictions from different times in the flow evolution shows
shown in Fig. 4. Curves 1 and 2 correspond to the runs shown ithat, in the case of a doubly periodic domain, the dipolar
Figs. 1 and 2, respectively. structure of the quasistationary state is already correctly pre-

dicted from the initial condition. In the case of a bounded
lution, implies that the vorticity distribution no longer satis- domain, the correct topology is predicted on a time scale
fies the strong-mixing conditions. This conclusion is consis-comparable with the emergence of the quasistationary state.
tent with the fact that dipolar structures are found as stable One may expect that the statistical predictions become
statistical equilibria: the stability diagram corresponding tobetter if they are compared to simulations with higher values
the linearized limit of the statistical theorfFig. 9) is no  of the Reynolds number. Indeed, in RgE4] it was shown
longer valid. Nevertheless, it makes sense to convey sormi@at for simulations with periodic boundaries and Re
aspects of this diagram to the nonlinear regime. As discussed14 000, the precise form of the- scatter plot is captured
above, the value o =T'/\/2E determines the structure of almost perfectly by the statistical equilibrium calculated
the statistical equilibrium in the linearized limit. Although from a relatively early time, long before the nonlinear evo-
strictly speaking, this parameter is not relevant in the nonlinlution is completed. This correspondence was not found for
ear regime, we find that it may serve as an indication of théimulations with either stress-free or periOdiC boundaries and
structure of the predicted statistical equilibrium for a wider Re=2000. In order to increase the Reynolds number in simu-
range of parameters. Table | contains the valued attg, lations on a bounded domaiwith either stress-free or no-
for all 16 runs. For those cases in which the correct globaflip boundary conditionsto Re>10000, present state-of-
structure is not predicted fdr<50, the value ofA is calcu-  the-art computer capacity is not sufficient. Reliable
lated attoss (indicated by parenthesesn Fig. 14, the time ~ laboratory experiments on 2D decaying Navier-Stokes turbu-
evolution of A is plotted for the six simulations depicted in !ence have not been reported for such high Reynolds num-
Fig. 4. For almost alsymmetric and asymmetiiaipole ~ Pers. Altogether, we can conclude that when comparing sta-
formations(curves 1, 3, and )6in F|g 14,|A| remains rela- tistical equ|||br|a _an_d NaVler-S_tOkeS dynamlCS with either
tively small for all times. In these cases, the quasistationarptress-free or periodic boundaries and moderate values of the
(dipolan structure is well predicted by the statistical theory. Reynolds number, the predictive power of the statistical
Apparently, when the input parameters are sufficiently fatheory of vortex patches is more limited in the case of a
from the regime where the linearized approximation holdsbounded domain.
dipolar structures become stable solutions of the maximum This result can be understood by recalling some charac-
entropy equations fofA|<1. In contrast, for the runs in teristic properties of the Navier-Stokes evolution in the two
which monopoles or strongly asymmetric dipoles aredomain types. In a finite box viscous dissipation is more
formed, |A| grows significantly(curves 2, 4, and 5 in Fig. Substantial and is effective over a longer period than in the
14). Although in these cases a similar transition from thedoubly periodic domain. In the latter case the dissipation
linear to the nonlinear regime occurs, for large values\pf ~ diminishes when the small-scale structures of the initial con-
monopoles are the only stable statistical equilibria. This obdition have disappeared, whereas in the finite domain, small-
servation could explain the fact that in some cases, in whicf§calé structures continue to be produced when the vortices
the vorticity distribution is highly asymmetric, the dipolar €ncounter the boundary and are deforrfwee, for example,

mechanical theories to simulations with stress-free bound-
IV. DISCUSSION AND CONCLUSIONS aries is limited because these boundary conditions permit net

leakage of vorticity, which breaks the invariance of the cir-

Our ensemble of Navier-Stokes simulations in a box withculationI'. At early times, the sign of the net leakage appears
stress-free boundaries reveals that, for moderate values of the be a matter of chance. In most cases the net leakage re-

Reynolds number, both monopolar and dipolar quasistationmains small and results only in an asymmetry of the dipolar
ary structures emerge from statistically identical initial con-quasistationary state. In some cases, accidentally, the net
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leakage is more substantial. When this happens, one sign ofder to decrease the effects of viscous dissipation one could

the vorticity is pushed close to the boundary and leaks out o$tart the evolution with initial conditions, which contain less

the domain. This process enhances the growtfijpfresult-  small-scale structures. However, this leads to the problem of

ing in the emergence of monopolar equilibria. nonergodicity in the statistical analydit5], which we have
Summarizing, the breakdown of the statistical predictionsavoided here.

for the case of a box with stress-free boundaries and moder-

ate Reynolds number is mainly due to a combination of two ACKNOWLEDGMENTS
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