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Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows
on a bounded domain
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KNMI (Netherlands Meteorological Institute), P.O. Box 201, 3730 AE De Bilt, The Netherlands

S. R. Maassen* and H. J. H. Clercx
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~Received 24 November 1998!

In this paper the applicability of a statistical-mechanical theory to freely decaying two-dimensional~2D!
turbulence on a bounded domain is investigated. We consider an ensemble of direct numerical simulations in
a square box with stress-free boundaries, with a Reynolds number that is of the same order as in experiments
on 2D decaying Navier-Stokes turbulence. The results of these simulations are compared with the correspond-
ing statistical equilibria, calculated from different stages of the evolution. It is shown that the statistical
equilibria calculated from early times of the Navier-Stokes evolution do not correspond to the dynamical
quasistationary states. At best, the global topological structure is correctly predicted from a relatively late time
in the Navier-Stokes evolution, when the quasistationary state has almost been reached. This failure of the
~basically inviscid! statistical-mechanical theory is related to viscous dissipation and net leakage of vorticity in
the Navier-Stokes dynamics at moderate values of the Reynolds number.@S1063-651X~99!00508-5#

PACS number~s!: 47.32.Cc, 47.27.Eq, 05.20.2y
in

w

ct
m
io

ru
an
th
a

-
fo
is
im

th
2D
e

n
ar
k
o

ye

r
w

e
of
the
e
y
in

cale
n
n is

ari-
ved
ite

s
ies
ex-
se
olu-
on

sti-
oth

on
ria
ere

nd

ors
sed
s or
le,

-
ua-

on
I. INTRODUCTION

The formation of large-scale vortices in~quasi-!two-
dimensional~2D! turbulence has been studied extensively
laboratory experiments@1–4# and in numerical simulations
@5–7#. For sufficiently high Reynolds numbers, the flo
eventually organizes in one large-scale structure, which
stable and stationary, apart from weak dissipative effe
Several authors have applied the principles of statistical
chanics to predict the form of these large-scale quasistat
ary structures. This approach was initiated by Onsager@8#,
who qualitatively predicted the appearance of coherent st
tures by considering a system of point vortices. Joyce
Montgomery@9# presented a general equation, known as
sinh-Poisson equation, for the statistical equilibrium of
point vortex system. Both Miller@10# and Robert and Som
meria@11# independently derived an alternative equation
the statistical equilibrium of an inviscid 2D fluid on the bas
of a patchwise discretization of the continuous field. The a
of the present paper is a discussion of the applicability of
statistical theory of vortex patches to freely decaying
turbulence on a bounded domain, with Reynolds numb
comparable to those in laboratory experiments.

In several publications, statistical-mechanical predictio
based on a patchwise discretization have been comp
with the results of direct numerical simulations. A remar
ably good agreement was found in a numerical simulation
the time evolution of a periodically continuated shear la
@12#, and in the study of an isolated vortex merger@13#.
However, a high Reynolds-number simulation of Navie
Stokes dynamics on a doubly periodic domain has sho
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that for an initially small-scale vorticity field, small but finit
dissipation leads to limited predictability: the global form
the final, quasistationary vortex can be predicted from
initial conditions, but the details are only captured if th
equilibrium is derived from the flow field after a few edd
turnover times@14#. Furthermore, laboratory experiments
a magnetized plasma column@4# and equivalent Navier-
Stokes simulations have shown that for isolated, large-s
initial vorticity fields, the statistical theory applies only whe
it is restricted to a subdomain, because the time evolutio
not globally ergodic in these cases@15#. Notwithstanding
these limitations, the general conclusion from these comp
sons is that the statistical predictions match the obser
structures reasonably well in the case of a periodic or infin
domain.

However, laboratory experiments with realistic fluid flow
are performed in finite containers with physical boundar
@2,3#. Since the quasistationary states emerging in such
periments usually fill the whole domain, the shape of the
structures depends on the geometry of the container. S
tions of the various statistical-mechanical theories, based
either point vortices or vortex patches, have been inve
gated systematically for the case of a bounded domain. B
Pointin and Lundgren@16# and Ting, Chen, and Lee@17#
calculated maximum entropy solutions of the sinh-Poiss
equation on various bounded domains. Statistical equilib
for bounded fluids based on a patchwise discretization w
calculated by Ju¨ttner, Thess, and Sommeria@18# for a class
of initial conditions consisting of isolated vortex patches, a
by Chavanis and Sommeria@19# for initial conditions satis-
fying the so-called strong-mixing conditions. Several auth
@3,18–20# have tried to relate these statistical solutions ba
on a patchwise discretization to experimental observation
numerical simulations, with varying success. For examp
Marteau, Cardoso, and Tabeling@3# concluded that the cal
culated equilibria do not match experimentally observed q
ic
2864 © 1999 The American Physical Society
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PRE 60 2865STATISTICAL-MECHANICAL PREDICTIONS AND . . .
sistationary structures in thin layers of electrolyte~with Re
'1000!, whereas a numerical simulation of the same exp
ment ~approximated by a purely 2D system with stress-f
boundaries and Re'3000! lead to the opposite conclusio
@20#. Altogether, the applicability of the statistica
mechanical theory of vortex patches to finite domain flu
flows is still controversial.

The main problem in comparing statistical-mechani
equilibria with Navier-Stokes simulations in closed geo
etries is the appropriate choice of boundary conditions. In
various ~basically inviscid! statistical-mechanical theories
the boundaries are completely determined by the imper
ability condition ~no in or outflow!, whereas the second
order derivatives in the viscous term of the Navier-Stok
equation require a second boundary condition. Numer
simulations of decaying 2D turbulence in circular@21# and
square@22,23# containers have shown that, for moderate v
ues of the Reynolds number (Re&2000) the choice of this
second boundary condition~either no-slip or stress-free! in-
fluences the topology of the quasistationary state. In
physically most relevant case of no-slip boundaries, str
vorticity sheets emerge in the viscous boundary laye
which detach from the boundaries and interact with the fl
in the interior of the domain. This process of creation a
detachment of viscous boundary layers cannot be taken
account in statistical-mechanical equilibria. Therefore, it
unlikely that statistical theories correctly predict the qua
stationary states observed in laboratory experiments and
merical simulations with no-slip boundaries at moderate v
ues of Re@22#. The best one can hope is that for sufficien
high Reynolds numbers, the statistical prediction cor
sponds to the interior flow structure, i.e., excluding t
boundaries. However, such high Reynolds number comp
tions are not possible with present state-of-the-art numer
techniques for flows with no-slip boundaries. Since sh
dominated boundary layers do not occur in simulations w
stress-free boundary conditions@22#, such simulations seem
to be better suited for comparison between statistical pre
tions and Navier-Stokes dynamics with moderate Reyno
numbers.

In this paper we reconsider the applicability of th
statistical-mechanical theory of vortex patches in the cas
a bounded domain. In particular, we present the results o
ensemble of Navier-Stokes runs in a square box with str
free boundaries~Sec. II! and the corresponding statistic
equilibria, calculated from different stages of the evoluti
~Sec. III!. The initial vorticity fields are small-scale, quasitu
bulent, random distributions of vorticity. Although viscou
effects cannot be neglected for such small-scale initial c
ditions @14#, we have made this choice in order to avo
problems related to ergodicity and to make sure that the q
sistationary states are the results of unbiased turbulent re
ation.

II. NAVIER-STOKES DYNAMICS

A. Numerical method

In this section the results of a numerical experime
based on simulations of the 2D incompressible Nav
Stokes equation, are presented. The experiment consis
an ensemble of runs, each with a different quasiturbu
i-
e
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initial condition. Formulated in terms of the velocityv
5(u,v) and the vorticityv5 ẑ•“3v, the equations of mo-
tion are

]v

]t
1~v•“ !v5

1

Re
¹2v, ~1!

¹2v5 ẑ3“v. ~2!

The Reynolds number is defined as Re5UW/n, whereU is
the root of the mean-squared velocity of the initial flow fie
per unit surface,W is the half-width of the domain andn is
the kinematic viscosity of the fluid. All runs described in th
paper are performed with Re52000. The unit of timet is the
time-independent eddy turnover timeW/U.

The flow is confined to the square box@21,1#3@21,1#
with boundaryb by enforcing the impermeability condition

n̂•vub50. ~3!

Note that, in the vorticity-stream function representation
model ~1! and ~2!, condition ~3! is equivalent to imposing
cub5const, where the stream functionc is defined by the
Poisson equationv52¹2c. In addition, we impose the
flow to be stress-free at the boundary:

n̂•¹v iub50, ~4!

where v i is the component of the velocity parallel to th
boundary. On a square domain, a combination of conditi
~3! and ~4! yields

vub50, ~5!

which will be used as a boundary condition for the vortic
equation~1!.

Equations ~1!–~5! are solved numerically with a 2D
Chebyshev pseudospectral method. Using Cartesian co
natesr5(x,y), the vorticity and both components of th
velocity are expanded in a double truncated series
Chebyshev polynomials; for example, v(x,y,t)
5(n50

N (m50
N vnm(t)Tn(x)Tm(y), with Tn(x)5cos(nu) and

u5cos21(x). The numerical integration is performed in spe
tral space, except for the evaluation of the nonlinear ter
which are calculated in physical space using fast Fou
transformations. The time integration is based on the seco
order accurate semi-implicit Adams-Bashforth-Cran
Nicolson scheme. Further details of the numerical proced
can be found in@22–24#.

An ensemble of 16 independent, quasiturbulent, ini
conditions is constructed in the following way. For ea
member of the ensemble the first 65365 Chebyshev coeffi-
cients of both components of the velocity are drawn ra
domly from a zero-mean Gaussian distribution. The varia
snm of the initial velocity spectrum is chosen as

snm
2 5

nm

@11~ 1
8 n!4#@11~ 1

8 m!4#
for 0<n, m<64, ~6!

andsnm50 for n, m>65. Subsequently, the resulting velo
ity field is multiplied by smoothing functionsf (x) and f (y)
in order to enforcev(r ,t50)50 at the boundaries~f (x)
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5@12exp$2b(12x2)2%# with b5100!. The resulting velocity
field v~r ,0! is normalized such that theL2 norm of the ve-
locity field per unit surface is equal to one. It should be no
that the initialization procedure described above leads to
locity fields with “•vÞ0, which are physically irrelevant
Although a divergence-free flow field with stress-free boun
ary conditions is enforced during the first time integrati
step, a short transient phase occurs in which a realistic ph
cal situation is reached. Therefore, the field att51 will be
considered as the physical initial condition of the flow ev
lution.

The time integration is sensitive to the number of Che
shev modes used in the expansion. It is found that for
particular type of initial conditions and this particular valu
of the Reynolds number (Re52000), N5288 Chebyshev
modes in each direction is sufficient to resolve the smal
scales of the flow field: increasing this number does
change the results of the integration during the first 300 e
turnover times. Since numerical simulations of flows w
nonperiodic boundary conditions are computationally mu
more expensive then the doubly periodic case, the hardw
necessary to perform well-resolved simulations with hig
Reynolds numbers was not available.

During the numerical computations, several integrals
calculated, such as the total energyE, the net circulationG,
and thenth moment of the vorticityGn ~with, in particular,
the enstrophyG2!. These quantities are defined, respective
as

E~ t !5
1

2 E v~r ,t !2dr , ~7!

G~ t !5E v~r ,t !dr , ~8!

Gn~ t !5E vn~r ,t !dr . ~9!

Due to the random initialization, the values of the circulati
at t51 are small in each realization and zero on average

B. Results of the numerical simulations

The most remarkable observation in the numerical exp
ment is that the different integrations do not evolve towa
the same equilibrium state, although their initial conditio
are statistically equivalent. Roughly speaking, the differ
quasistationary states that are found belong to two topol
classes: dipoles and monopoles. The emergence of t
structures is illustrated in Figs. 1 and 2, respectively, wh
contain snapshots of the evolving vorticity fields of two typ
cal runs. Fort&15 @cf. Figs. 1~a!–1~c! and Figs. 2~a!–2~c!#,
the global dynamics of all simulations is characterized by
formation of coherent structures~monopoles, dipoles, and
occasionally, tripoles! and the appearance of thin vorticity
gradient sheets in regions of high strain between the vort
and between the vortices and the walls. For 15&t&45, the
flow organizes into a large structure. At this point the diffe
ences between the runs become evident: in Fig. 1 an alm
symmetric dipole emerges@Figs. 1~d! and 1~e!# that remains
present until at leastt5100, while in Fig. 2, initially a very
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asymmetric dipole is formed, which transforms into a mon
pole at later times@cf. Figs. 2~d! and 2~e!#. For t*45, the
flow dynamics is essentially determined by viscous dissi
tion, a regime that is not part of the present study. Still, it
interesting to see that the dipolar structure does not sta
the same position, but performs a slow rotating motion. F
instance, between Figs. 1~e! and 1~f!, the dipole has rotated a
bit more than 90° clockwise.

In our numerical experiment, a majority of runs~12 out of
16! evolved towards a dipolar structure, such as shown
Fig. 1, whereas the monopolar structure, such as the
formed in Fig. 2, was obtained in only four cases. This di
sion in terms of topology is, however, quite rough. The
polar structures, in fact, range from very symmetric dipo

FIG. 1. Navier-Stokes time evolution of the vorticity field, for
typical run in which a relatively symmetric dipole is formed
Dashed contours represent positive vorticity, solid contours re
sent negative vorticity. The contour intervals are~a! 2, ~b! 0.5,
~c! 0.25, ~d! 0.2, ~e! 0.1, and~f! 0.05.

FIG. 2. Navier-Stokes time evolution of the vorticity field, for
typical run in which a monopole is formed. Dashed contours rep
sent positive vorticity, solid contours represent negative vortic
The contour intervals are~a! 2, ~b! 0.5, ~c! 0.25, ~d! 0.2, ~e! 0.15,
and ~f! 0.05.
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to cases where one of the vortices is substantially stron
than the other one. Once the dipole has been formed,
weaker vortex is often more strongly dissipated near
walls and the dipole becomes more and more asymmetric
fact, the monopole formation shown in Fig. 2 can be
garded as an extreme realization of the asymmetric case
small positive vortex in the upper left corner of Fig. 2~d! can
be regarded as the weaker part of an asymmetric dipole.
small vortex keeps rotating around its negative counterp
until at t.35 it is torn apart and distributed in a ring o
positive vorticity @Fig. 2~e!#.

The different time scales for dipole and monopole form
tions are clearly illustrated in Fig. 3, where the ratio of e
strophy and energyG2 /E is drawn. SinceG2 /E;k2, with k
the dominant wave number of the energy spectrum, this r
reflects the scale that dominates the vorticity field. Curve
and 2 correspond to the dipole and monopole formati
shown in Figs. 1 and 2, respectively. The curve of the dip
approaches its minimum value~largest scale! already att
'25, whereas the curve of the monopole formation
proaches its~much lower! minimum at t'40. Curve 3 re-
flects the very late emergence of another symmetric dip
~at t'40!, and curve 4 corresponds to a run in which a ve
asymmetric dipolar structure is formed aroundt.25. In this
latter case one of the vortices is weakened by dissipa
near the boundary until a monopolar structure remainst
.55. We expect that in the very late time viscous stage
the evolution (t.300) monopoles will be formed in all runs
since this structure is the viscous eigenmode solution w
the lowest damping rate@2,22,23,25#.

Another characteristic difference between the decay s
narios presented in Figs. 1 and 2 is the time evolution of
total circulationG, defined in Eq.~8!. In contrast to flows
with no-slip or periodic boundaries,G is not a conserved
quantity in a box with stress-free boundary conditions. S
tial integration of the Navier-Stokes equation~1! yields

dG

dt
5

1

Re R dsn̂•“v~r ,t !, ~10!

which implies that vorticity can diffuse through the boun

FIG. 3. Time evolution of the ratioG2 /E for four different runs.
Curves 1 and 2 correspond to the runs shown in Figs. 1 an
respectively.
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aries. Figure 4 shows the time evolution of the net circulat
for six different runs, including the dipole formation of Fig
1 ~curve 1! and the monopole formation of Fig. 2~curve 2!.
It appears that for the almost symmetric dipole formatio
~curves 1, 3, and 6 in Fig. 4!, positive and negative vorticity
leak through the boundary in more or less equal amou
whereas a symmetry breaking between positive and nega
vorticity occurs in the cases where an asymmetric dip
~curve 5! or a monopole~curves 2 and 4! is formed. Defining
the total positive and negative circulationsG6

5*v6(r ,t)dr , with v1.0 and v2,0, respectively, this
symmetry breaking is clearly illustrated in Fig. 5, whereG1

and G2 are drawn for the two runs shown in Fig. 1~solid
curves! and Fig. 2~dashed curves!. The curves correspond
ing to the dipole formation stay relatively close to each oth
but the curves corresponding the monopole formation sta
diverge at aboutt510, leading to a strong decrease of the n
circulationG ~curve 2 in Fig. 4!. Thus we can relate the valu
of G to the asymmetry of the dipolar state that emerges:
positive G, the positive vortex is stronger than the negati
one, and vice versa.

2,

FIG. 4. The net circulationG plotted vs timet for six different
runs. Curves 1 and 2 correspond to the runs shown in Figs. 1 an
respectively.

FIG. 5. Decay of the total positive (G1) and negative (G2)
circulation for the dipole formation shown in Fig. 1~solid lines! and
the monopole formation shown in Fig. 2~dashed lines!.
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Since the numerical simulations are performed with
moderate value of the Reynolds number, viscous dissipa
in the Navier-Stokes dynamics induces a significant deca
the normalized energyE/E0 and enstrophyG2 /(G2)0 as il-
lustrated in Fig. 6. Apart from decreasing the kinetic ener
viscous dissipation leads to rapid changes in the vorti
distribution in the early stages of the flow evolution. Figu
7~a! displays the fraction of the domain area~g! with a cer-
tain vorticity level~s! for the run shown in Fig. 1 att51, 5,
and 10. In this initial stage of the flow evolution, small-sca
structures are efficiently dissipated, while high-value vort
ity concentrates in isolated vortex structures. This leads
vorticity distribution that is more sharply peaked arou
zero, as can be inferred from Fig. 7~a!. The shape of the
vorticity distribution is conveniently represented by the ku
tosisK5G4 /(G2)2. Figure 7~b! displays the time evolution
of kurtosis K, divided by its initial valueK0 , for the two
simulations considered in Fig. 1~solid line! and Fig. 2
~dashed line!. The initial growth ofK is due to the evolution
towards a more sharply peaked vorticity distribution,
shown in Fig. 7~a!. In the final stages of the evolution, th
flow dynamics is dominated by viscous dissipation of t
large-scale vortex, which leads to a decrease ofK. Therefore,
at the point whereK reaches its maximum value, the nonli
ear evolution of the flow is basically depleted. In most ca
we have found that shortly after this time, the ratioG2 /E
becomes constant, indicating that the formation of the q
sistationary state is completed@cf. curves 1 and 2 in Figs. 3
and 7~b!#.

III. STATISTICAL-MECHANICAL PREDICTIONS

In this section the results of the Navier-Stokes simulatio
described in Sec. II are compared with predictions based
a statistical-mechanical theory for 2D turbulence, derived
Miller @10# and Robert and Sommeria@11#. Firstly, in Sec.
III A we briefly describe the basic principles of this theor
based on a patchwise discretization of the continuous fl
field, and present the equations defining the correspon
statistical equilibria. In Sec. III B the statistical-mechanic

FIG. 6. Normalized energyE/E0 and enstrophyG2 /(G2)0 plot-
ted vs timet for the dipole formation shown in Fig. 1~solid lines!
and the monopole formation shown in Fig. 2~dashed lines!.
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equilibria calculated from the initial conditions~at t51! of
the ensemble of Navier-Stokes simulations are presented
compared with the analytical solutions obtained by Chava
and Sommeria in a linearized limit of the theory@19#. Fi-
nally, in Sec. III C it is shown how the statistical prediction
change when the input vorticity fields are chosen from la
times in the Navier-Stokes evolution.

A. Entropy maxima of the vortex patch model

The statistical-mechanical theory considered in this pa
was derived on the basis of the inviscid Euler equat
@10,11#. Inviscid ~or high Reynolds number! flow dynamics
is characterized by the development of very complex, t
vorticity filaments. A deterministic description of a perfect
inviscid flow, where these filaments are not dissipat

FIG. 7. ~a! Vorticity distributions corresponding to the ru
shown in Fig. 1, plotted at three different times and~b! the kurtosis
K plotted vs timet for the dipole formation shown in Fig. 1~solid
lines! and the monopole formation shown in Fig. 2~dashed lines!.
The point whereK reaches its maximum value can be identifi
with the emergence of the quasistationary state~cf. Fig. 3!.
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would, therefore, require a rapidly increasing amount of
formation as time goes on. The idea of a statistical theor
to give up the deterministic description and introduce
probabilistic one. Therefore, the exact knowledge of the fi
grained, or microscopic, vorticity fieldv~r ! is replaced by
the probability densityr~r ,s! of finding the vorticity values
at position r @11#. Once the probability function is intro
duced, one can consider the locally averaged, or ma
scopic, vorticity fieldv̄(r )5*sr(r ,s)ds. Generally, there
are different microscopic vorticity fields that correspond
one macroscopic structure. The statistical equilibrium is
fined as the macroscopic vorticity field that corresponds
the largest number of microscopic fields.

Counting the number of microscopic realizations cor
sponding to the same macroscopic structure leads to the
nition of the mixing entropy:

S52E r~r ,s!ln r~r ,s!dsdr . ~11!

If ergodicity is assumed, the most probable state is defi
by the maximum of the entropy~11! for fixed values of the
inviscid invariants, such as the energyE and the different
moments of the vorticityGn . The energy~7! can be ex-
pressed in terms of the macroscopic vorticity field a
stream function~defined byv̄52¹2c!, and is taken to be
conserved on the macroscopic level:

1

2 E v̄cdr5E0 , ~12!

where the subscript 0 refers to the~fixed! input value. The
moments of the vorticity~9! are incorporated on a micro
scopic level by conserving the input vorticity distributio
g0(s)[(1/V)*d„s2v0(r )…dr via

1

V E r~r ,s!dr5g0~s!, ~13!

in which V is the domain area. This condition implies th
the total area of fluid elements with a certain vorticity val
s is conserved in the microscopic description. Note that
~13! does not imply the conservation of the momentsGn on
the macroscopic level, as they are partly transferred into fi
grained vorticity fluctuations, which vanish in the local a
eraging. For example, the enstrophyG2 of the ~coarse-
grained! statistical equilibrium is generally lower than i
input value, while the circulationG is exactly conserved on
both fine- and coarse-grained levels. This distinction
tween macroscopic and microscopic invariants coinci
with the distinction between ‘‘robust’’ and ‘‘fragile’’ invari-
ants in nearly inviscid flows@26#: when the viscosityn→0,
the energy and the circulation become constants of the
tion, whereas the conservation of higher-order inviscid
variants is destroyed by any infinitesimally small amount
viscosity. Therefore, one can argue that the statistical the
of vortex patches extends to weakly viscous flows, at leas
a qualitative sense, although it is derived on the basis of
inviscid equations of motion.
-
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Setting the constrained entropy variation to zero, o
finds a well-defined relationship between the equilibriu
macroscopic, vorticity, and stream function@10,11#, which
we denote by a superscript* :

v* ~r !5
*se2bsc* ~r !2m~s!ds

*e2bsc* ~r !2m~s!ds
. ~14!

The values of the Lagrange multipliersb and m~s! are de-
termined by the input values of the energyE0 and distribu-
tion g0(s) via constraints~12! and ~13!. The solutions to
Eqs.~12!–~14! are stable statistical equilibria, provided th
they are true maxima, and not minima or saddle points
the entropy, which remains to be checked. Together with
Poisson equation,

v* ~r !52¹2c* ~r !, ~15!

Eqs.~12!–~14! completely define the spatial structure of th
statistical equilibrium. The geometry of the domain det
mines the boundary condition for the Poisson equation
the present case of a closed box we putc* (r )ub50. Note
that, contrary to the Navier-Stokes equation, Eqs.~12!–~15!
do not require a boundary condition for the vorticity. Ther
fore, the statistical-mechanical equilibrium depends only
the geometry of the domain and the values of the input c
straintsE0 and g0(s); the theory does not account for no
slip nor stress-free boundary conditions.

Since, for general input parametersg0(s) and E0 , Eqs.
~12!–~15! cannot be solved analytically, the entropy maxim
have to be determined numerically. For this purpose, we
an algorithm developed by Turkington and Whitaker@27#.
The numerical treatment requires not only a spatial discr
zation of the fields, but also an approximation of the contin
ous vorticity distribution at a finite number of vorticity leve
sk . This brings the infinite set~13! down to a finite number
of constraints. In order to calculate the values of the dis
bution g0(sk), the corresponding vorticity fieldv~r ! is dis-
cretized on a grid of 65365 equidistant points. Subse
quently, the continuous vorticity distribution is approximat
by 30 equidistant levelssk , ranging between the minimum
and maximum values ofv~r !. We have checked that th
equilibria are not sensitive to these approximations: incre
ing the number of gridpoints or the number of vorticity le
els does not change the results. The numerical value oE0
can be calculated directly from the velocity fieldv~r ! using
Eq. ~7!.

B. Predictions from t51

The statistical equilibria calculated on the basis of t
values ofE0 andg0(s) at t51 in the Navier-Stokes simu
lations, are characterized by an approximately linear rela
between vorticity and stream function for all runs. For e
ample, Fig. 8~a! depicts thev-c relation of the equilibrium
calculated from the field shown in Fig. 1~a!. Figure 8~b!
shows the corresponding vorticity field: a negative vort
surrounded by a ring of positive vorticity. The monopol
structure of the statistical equilibrium turns out to be gene
for this class of initial conditions. The sign of the core d
pends sensitively upon the specific realization: we ha
found about as many positive as negative monopoles. O
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ously, these statistical equilibria do not agree with the di
lar quasistationary states of the Navier-Stokes simulati
presented in Sec. II.

The generality of the monopolar structure in thet51 pre-
dictions can be understood by considering the so-ca
‘‘limit of strong mixing’’, in which the entropy maximiza-
tion is only weakly restricted by constraints~12! and~13!. In
this limit, the statistical equilibria are characterized by a l
ear relation betweenv andc @19#. Since the statistical equi
libria calculated fromt51 in our ensemble of simulation
are characterized by such a linearv-c relation, one can ex-
pect that the initial conditions used for these calculations
in the strong-mixing regime. This property could have be
inferred a priori from the abundance of small-scale stru
tures in the initial conditions.

In Ref. @19# Chavanis and Sommeria presented a clas
cation of such linearized solutions on a bounded dom
The authors show that the structure of the solutions in
linearized limit depends only upon a single parameterL,
defined by

FIG. 8. v-c relation ~a! and vorticity field~b! of the statistical
equilibrium calculated from the vorticity field shown in Fig. 1~a!.
Dashed contours represent positive vorticity, solid contours re
sent negative vorticity. The contour interval is 0.5. The shape of
vorticity field and the linearv-c relation of this equilibrium are
generic for all predictions att51.
-
s

d

-

e
n

-
n.
e

L5
G

A2E
. ~16!

Figure 9 displays a diagram of the ratio between entropy
energyS/E versusL, for three different solutions to the lin
earized equations in a square box.~We kindly thank Dr. P-H.
Chavanis for providing this picture!. In this diagram, solid
curves represent stable solutions, and the dashed curve
responds to unstable solutions. The solutions with negativL
~i.e., G,0!, not depicted in this figure, can be obtained fro
the positiveL structures by reversing the signs of the vort
ity and stream function.

For all the initial conditions of our ensemble, we foun
uLu,0.2. From the diagram depicted in Fig. 9 one can re
that in this range both positive and negative monopoles
stable statistical equilibria in the linearized limit~solid lines!.
Only above a certain threshold (uLu'0.5), the solution with
the lowest entropy~a negative monopole whenL,G.0 and
a positive monopole whenL,G,0! becomes unstable. Thi
analysis of the linearized case is consistent with the num
cal solutions of the full statistical-mechanical equations p
sented above, where indeed both positive and nega
monopoles are found for statistically equivalent vortic
fields. The dashed line in Fig. 9 corresponds to dipolar so
tions of the linearized equations. In Ref.@19# it is shown that
these fields are at best saddle points instead of entr
maxima, and, therefore, these solutions are unstable.
observation is consistent with the fact that no dipolar str
tures are predicted fromt51 in our statistical analysis. Fi
nally, we remark that monopolar statistical equilibria are a
predicted by the statistical-mechanical theory based o
pointwise discretization. Solving the sinh-Poisson equat

e-
e

FIG. 9. The ratioS/E vs a control parameterL(L25G2/2E) for
different statistical equilibria in a square box, obtained in the l
earized approximation of thev-c relation, calculated by Chavani
and Sommeria@19#. The two solid curves represent stable monop
lar solutions of different sign~solid contours represent positive vo
ticity, dashed contours represent negative vorticity!. Above a cer-
tain threshold, the negative monopole becomes unstable.
dashed curve represents dipolar solutions, which can be show
be unstable for all values ofL. We gratefully acknowledge P-H
Chavanis for providing this picture.



p

n
s
6

de
he
t

th
es
om
s

a
ia

or

ri

ta

f
n
1
re
in
th
t

il
la

on

th
k
it

y

on
0
-
gr

t
ct

th

lu
d

ria

s,
tain

e
-
he

ing
se
: a

al

t
he

ia

PRE 60 2871STATISTICAL-MECHANICAL PREDICTIONS AND . . .
on a bounded square domain, Pointin and Lundgren@16#
found that solutions with the highest values of the entro
have a monopolar topology.

C. Predictions from later times

We anticipate that the failure of the statistical predictio
from the vorticity fields att51 is related to viscous effect
in the Navier-Stokes simulations. As was shown in Fig.
the energy, which is conserved in the statistical theory,
cays substantially in the numerical integrations. Nevert
less, by repeating the maximum entropy calculations at
51 for the same discretized initial distributions, but wi
smaller values ofE0 , we have found that this parameter do
not change the global shape of the solutions. Apart fr
decreasing the kinetic energy, viscous dissipation lead
rapid changes in the vorticity distributiong(s) in the early
stages of the flow evolution~see Fig. 7!. In Ref. @14# it was
shown that this effect is responsible for the limited applic
bility of the statistical theory in the case of small-scale init
conditions and periodic boundary conditions.

If changes in the vorticity distribution are responsible f
the failure of the statistical theory att51, we expect to ob-
tain increasingly better results when the statistical equilib
are computed with the constraint valuesE0 andg0(s) taken
from later times. To verify this, we have calculated the s
tistical equilibria on the basis of the vorticity fieldsv(r ,t) at
different timest with 1<t<40, for all 16 runs. The results o
this analysis are illustrated by the exemplary dipole a
monopole formations of Figs. 1 and 2. Figures 10 and
display four statistical equilibria corresponding to these
spective simulations. As a first observation, notice that,
deed, the time evolution of the input parameters results in
prediction of different statistical equilibria from differen
times for the same run.

Let us first consider the dipole formation in more deta
For t,12, the statistical theory falsely predicts a monopo
quasistationary state. For example, Figs. 10~a! and 10~b! dis-
play the monopoles computed from the fields att51 andt
56, respectively, which are of opposite sign. Fort>12, a
dipolar structure is predicted, as illustrated by the predicti
at t512 andt518 in Figs. 10~c! and 10~d!. Although the
global shape of these latter predictions coincides with
global shape of the quasistationary state of the Navier-Sto
simulations, a detailed comparison between the vortic
plots shown in Figs. 10~c! and 10~d! and the quasistationar
state of the Navier-Stokes simulation@Fig. 1~e!# still reveals
differences. This can be seen clearly in Fig. 11, which c
tains thev-c relations of the four solutions shown in Fig. 1
~solid lines!, together with thev-c scatter plot of the quasi
stationary state of the corresponding Navier-Stokes inte
tion at t525. Notice that the scatter has not yet collapsed
a functional relation, indicating that the structure is, in fa
not completely stationary. The shift of thev-c curves ob-
served in Fig. 11 reflects the structure of the solutions:
dipolar states are centered aroundc50 ~t512 andt518!,
whereas the curves for the negative (t51) and positive (t
56) monopoles are situated at negative and positive va
of c ~with cub50!, respectively. As we have discusse
above, the early time prediction of a monopolar structure~at
t,12! is consistent with the analysis of statistical equilib
y
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in a linearv-c approximation. The fact that, at later time
dipolar solutions are generated, implies that after a cer
time the linear approximation is no longer valid. Indeed w
find that thev-c relation of the statistical equilibrium be
comes increasingly nonlinear, as illustrated in Fig. 11. T
evolution from linear to nonlinearv-c relations turns out to
be generic for all monopole and dipole formations.

Figure 12 contains the statistical equilibria correspond
to the formation of the monopole depicted in Fig. 2. The
maximum entropy solutions have the following structures

FIG. 10. Vorticity contour plots corresponding to the statistic
equilibria calculated with the constraint valuesE and g(s) taken
from the fields shown in Figs. 1~a!–1~d!. Dashed contours represen
positive vorticity, solid contours represent negative vorticity. T
contour interval is 0.5 for all displayed fields.

FIG. 11. v-c relations corresponding to the statistical equilibr
shown in Fig. 10~solid lines!, together with thev-c scatter plot of
the field att525 in the Navier-Stokes evolution@Fig. 1~e!#.
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negative monopole att51, a positive monopole att56, a
dipole att513, and again a negative monopole att518. The
correspondingv-c relations are drawn in Fig. 13~solid
lines!, together with thev-c scatter plot of the quasistation
ary state of the corresponding Navier-Stokes integration
t538. Again, after some time (t>14), the global shape o
the statistical prediction~a negative monopole! is in agree-
ment with the quasistationary structure obtained in
Navier-Stokes simulation@see Fig. 2~e!#. One could argue
that this structure is also predicted from the input parame

FIG. 12. Vorticity contour plots corresponding to the statistic
equilibria calculated with the constraint valuesE and g(s) taken
from the fields shown in Figs. 2~a!–2~d!. Dashed contours represe
positive vorticity, solid contours represent negative vorticity. T
contour interval is 0.5 for all displayed fields.

FIG. 13. v-c relations corresponding to the statistical equilib
shown in Fig. 12~solid lines!, together with thev-c scatter plot of
the field att538 in the Navier-Stokes evolution@Fig. 2~e!#.
at

e

rs

at t51 @Fig. 12~a!#. However, since this structure is pre
dicted from the initial conditions~at t51! for all runs, and
since the predictions att56 and t513 in Fig. 12 have a
completely different shape, we feel that this corresponde
is coincidental. Moreover, as can be inferred from Fig. 1
the quasistationary state of the Navier-Stokes simulatio
characterized by a strongly nonlinearv-c relation, whereas
the v-c relation predicted fromt51 is linear.

Similar analyses of statistical predictions from later tim
in the Navier-Stokes evolution of the other 14 runs revea
that, for ~almost! all runs, after some time the correct glob
structure of the quasistationary state is predicted. Tab
contains some characteristics of all 16 runs of the ensem
the time at which the quasistationary state is reached in
simulations (tQSS), the type of quasistationary state~mono-
pole or dipole!, the net circulation of this structure at tim
tQSS, and the time at which the global structure is correc
predicted by the statistical theory (tSM). From this table one
can read that quasistationary dipoles with a more or l
symmetric vorticity distribution~i.e., uGu&0.3! are, on aver-
age, correctly predicted fort'20, while the quasistationary
state in these runs emerges on average att'27. If the distri-
bution is more asymmetric (uGu.0.3) the first correct pre-
diction is generally obtained at a later time. For three ru
the ~asymmetric! dipolar quasistationary state is not pr
dicted from the input fields up tot550, although by that
time the Navier-Stokes evolution clearly has reached a q
sistationary state.

The observation that thev-c relations of the statistica
predictions become increasingly nonlinear when the in
values are taken from later times in the Navier-Stokes e

l

TABLE I. Several characteristics of the reported ensemble
runs: the time at which a quasistationary state~QSS! emerges in the
Navier-Stokes simulation (tQSS), the type of QSS~M5monopole,
D5dipole!, the net circulationG at timetQSS, the time at which the
correct global structure is predicted by the statistical theory (tSM),
and the value of the parameterL at the timetSM .

Run tQSS Type of QSS G(tQSS) tSM L (tSM)

1 24 D 0.14 12 0.38
2 38 M 21.84 14 20.69
3 41 D 0.04 40 0.06
4 23 D 0.63 25 0.92

54 M 1.38 30 1.07
5 50 D 0.73 - ~1.51!
6 25 D 20.26 20 20.32
7 22 D 20.15 19 20.25
8 22 D 0.60 20 0.71
9 25 D 20.08 10 20.002

10 50 D 0.71 - ~1.26!
11 30 D 0.30 20 0.29
12 20 D 20.10 15 20.11
13 28 D 20.12 20 20.22

87 M 20.88 - ~21.9!
14 32 D 0.87 - ~1.21!
15 20 D 20.05 15 0.11

72 M 21.10 - ~21.86!
16 32 D 0.20 15 0.41
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lution, implies that the vorticity distribution no longer sati
fies the strong-mixing conditions. This conclusion is cons
tent with the fact that dipolar structures are found as sta
statistical equilibria: the stability diagram corresponding
the linearized limit of the statistical theory~Fig. 9! is no
longer valid. Nevertheless, it makes sense to convey s
aspects of this diagram to the nonlinear regime. As discus
above, the value ofL5G/A2E determines the structure o
the statistical equilibrium in the linearized limit. Althoug
strictly speaking, this parameter is not relevant in the non
ear regime, we find that it may serve as an indication of
structure of the predicted statistical equilibrium for a wid
range of parameters. Table I contains the values ofL at tSM
for all 16 runs. For those cases in which the correct glo
structure is not predicted fort<50, the value ofL is calcu-
lated attQSS ~indicated by parentheses!. In Fig. 14, the time
evolution ofL is plotted for the six simulations depicted
Fig. 4. For almost all~symmetric and asymmetric! dipole
formations~curves 1, 3, and 6! in Fig. 14, uLu remains rela-
tively small for all times. In these cases, the quasistation
~dipolar! structure is well predicted by the statistical theo
Apparently, when the input parameters are sufficiently
from the regime where the linearized approximation hol
dipolar structures become stable solutions of the maxim
entropy equations foruLu,1. In contrast, for the runs in
which monopoles or strongly asymmetric dipoles a
formed, uLu grows significantly~curves 2, 4, and 5 in Fig
14!. Although in these cases a similar transition from t
linear to the nonlinear regime occurs, for large values ofuLu
monopoles are the only stable statistical equilibria. This
servation could explain the fact that in some cases, in wh
the vorticity distribution is highly asymmetric, the dipola
quasistationary states are not predicted.

IV. DISCUSSION AND CONCLUSIONS

Our ensemble of Navier-Stokes simulations in a box w
stress-free boundaries reveals that, for moderate values o
Reynolds number, both monopolar and dipolar quasistat
ary structures emerge from statistically identical initial co

FIG. 14. Time evolution of the parameterL for the same runs as
shown in Fig. 4. Curves 1 and 2 correspond to the runs show
Figs. 1 and 2, respectively.
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ditions. In the statistical-mechanical analysis, based o
patchwise discretization of the continuous flow field, the
structures are not predicted from the initial conditions of t
simulation~at t51!. However, if we take the constraint va
ues that determine the solution to the maximum entro
equations, from increasingly later times in the Navier-Stok
evolution, the global structure of the statistical predicti
eventually coincides with the quasistationary state of the c
responding simulation.

In order to compare the present findings to the case o
doubly periodic domain, as described in Ref.@14#, the en-
semble of initial conditions presented in Sec. II has also b
used in numerical simulations of 2D Navier-Stokes flow w
periodic boundary conditions and Re52000. ~The simula-
tions with periodic boundary conditions are performed with
Fourier pseudospectral code provided by Dr. A. Niels
RISO/ , Denmark.! Calculating the statistical-mechanical pr
dictions from different times in the flow evolution show
that, in the case of a doubly periodic domain, the dipo
structure of the quasistationary state is already correctly
dicted from the initial condition. In the case of a bound
domain, the correct topology is predicted on a time sc
comparable with the emergence of the quasistationary s

One may expect that the statistical predictions beco
better if they are compared to simulations with higher valu
of the Reynolds number. Indeed, in Ref.@14# it was shown
that for simulations with periodic boundaries and R
514 000, the precise form of thev-c scatter plot is captured
almost perfectly by the statistical equilibrium calculat
from a relatively early time, long before the nonlinear ev
lution is completed. This correspondence was not found
simulations with either stress-free or periodic boundaries
Re52000. In order to increase the Reynolds number in sim
lations on a bounded domain~with either stress-free or no
slip boundary conditions! to Re.10 000, present state-of
the-art computer capacity is not sufficient. Reliab
laboratory experiments on 2D decaying Navier-Stokes tur
lence have not been reported for such high Reynolds n
bers. Altogether, we can conclude that when comparing
tistical equilibria and Navier-Stokes dynamics with eith
stress-free or periodic boundaries and moderate values o
Reynolds number, the predictive power of the statisti
theory of vortex patches is more limited in the case o
bounded domain.

This result can be understood by recalling some cha
teristic properties of the Navier-Stokes evolution in the tw
domain types. In a finite box viscous dissipation is mo
substantial and is effective over a longer period than in
doubly periodic domain. In the latter case the dissipat
diminishes when the small-scale structures of the initial c
dition have disappeared, whereas in the finite domain, sm
scale structures continue to be produced when the vort
encounter the boundary and are deformed@see, for example,
Fig. 1~c!#. Secondly, the applicability of statistica
mechanical theories to simulations with stress-free bou
aries is limited because these boundary conditions permit
leakage of vorticity, which breaks the invariance of the c
culationG. At early times, the sign of the net leakage appe
to be a matter of chance. In most cases the net leakag
mains small and results only in an asymmetry of the dipo
quasistationary state. In some cases, accidentally, the

in
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leakage is more substantial. When this happens, one sig
the vorticity is pushed close to the boundary and leaks ou
the domain. This process enhances the growth ofuGu, result-
ing in the emergence of monopolar equilibria.

Summarizing, the breakdown of the statistical predictio
for the case of a box with stress-free boundaries and mo
ate Reynolds number is mainly due to a combination of t
effects: theviscous dissipation of the small scales~growing
kurtosis!, also observed in the periodic domain, and thenet
leakage of vorticity through the stress-free boundar
~growing uGu!. The net leakage of vorticity can be avoided
applying no-slip instead of stress-free boundary conditio
but these boundaries give rise to the production of visc
boundary layers, which are obviously not captured by
present statistical-mechanical theory. We cannot avoid
diffusion of vorticity through the boundaries by a so-call
‘‘no-flux’’ condition ( n̂•¹vub50), since this condition is
mathematically inconsistent with vorticity equation~1!. In
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order to decrease the effects of viscous dissipation one c
start the evolution with initial conditions, which contain le
small-scale structures. However, this leads to the problem
nonergodicity in the statistical analysis@15#, which we have
avoided here.
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